

Journal of Alloys and Compounds 317–318 (2001) 92–97

ournal of
ALLOYS
AND COMPOUNDS

www.elsevier.com/locate/jallcom

Neutron diffraction studies of Zr-containing intermetallic hydrides. Cubic $\text{Zr}_3 \text{V}_3 \text{B}_{0.24} \text{O}_{0.36} \text{D}_{8.0}$ and $\text{Zr}_3 \text{V}_3 \text{B}_{0.40} \text{O}_{0.60} \text{D}_{6.4}$ with filled η_1 -type structures

V.A. Yartys^{a,b, *}, A.B. Riabov^b, B.C. Hauback^a

a *Institute for Energy Technology*, *P*.*O*. *Box* 40, *Kjeller*, *N*-²⁰²⁷ *Norway*

b *Metal Hydrides Department*, *Karpenko Physico*-*Mechanical Institute of the National Academy of Sciences of Ukraine*, 5, *Naukova Str*., *Lviv* 290601, *Ukraine*

Abstract

The deuterides $Zr_3V_3B_{0.24}O_{0.36}D_{8.0}$ and $Zr_3V_3B_{0.40}O_{0.60}D_{6.4}$ with cubic structures [space group $Fd\bar{3}m$ (No. 227)] related to η_1 -(Fe, W_2 C) type have been studied by powder X-ray and neutron diffraction. The transition from the alloys to the corresponding deuterides gives a redistribution of the O/B atoms between two available types of zirconium octahedra, from 16*d* (1/2, 1/2, 1/2) into the 8*b* (7/8, $3/8$, $7/8$) sites. A correlation between occupancy/vacancy of the Zr₆ octahedra and the structure of the deuterium sublattice has been established. This explains the significant differences between the deuterides studied in this work and the previously reported, chemically similar $Zr_3V_3OD_{4.93}$. \oslash 2001 Elsevier Science B.V. All rights reserved.

Keywords: Powder neutron diffraction; Zirconium; Vanadium; Boron oxide; Deuteride

erties of Zr–V alloys [1,2]. Both increased hydrogen two deuterides formed from the alloys studied in Ref. [3], sorption rates, even at low operating pressures, and high namely $Zr_3V_3B_{0.24}O_{0.36}D_{8.0}$ and $Zr_3V_3B_{0.40}O_{0.60}D_{6.4}$. H-storage capacities, exceeding 2.5 wt% H, are beneficial characteristics of such alloys [2].

A recent metallographic characterisation and powder neutron diffraction (PND) study, focusing on the effect of **2. Experimental** B_2O_3 addition on the hydrogenation behaviour of the Zr–V system, showed that $Zr-V-B_2O_3$ alloys with com-
positions $Zr_3V_3B_{0.24}O_{0.36}$ and $Zr_3V_3B_{0.40}O_{0.60}$ contain η_1 -
 $Zr_3V_3B_{0.24}O_{0.36}$ and $Zr_3V_3B_{0.40}O_{0.60}$ were prepared by positions $Zr_3V_3B_{0.24}O_{0.36}$ and $Zr_3V_3B_{0.40}O_{0.60}$ contain η_1 -
(Fe₃W₃C) type face centred cubic oxyboride $Zr_3V_3(B,O)$ as the main phase constituent $(a=12.1607(2)$ and (99.97%) , vanadium (99.5%) and boron oxide (99.9%) .
12.1705(4) Å, respectively; space group $Fd\bar{3}m$ (No. 227); 99.98% ¹¹B-enriched B₂O₃ was used in order to r $Z=16$) [3]. Two types of octahedra in the metal sublattice high absorption of neutrons by natural boron. The alloys [regular (8*b*) and slightly distorted (16*d*)] are similar with were annealed at 1273 K for 14 days and thereafter respect to their chemical surrounding (Zr_{ϵ}) and sizes quenched into water. $(r \sim 0.7 \text{ Å})$. However, for both materials only the 16*d* (1/2, Deuterium absorption by the alloys was performed at

1. Introduction completely empty $(Zr_3V_3B_{0.24}O_{0.36})$ or only slightly filled $(Zr_3V_3B_{0.40}O_{0.60}; n=0.04)$ [3].

Boron oxide doping favours the hydrogenation prop- The present PND study aims at the crystal structure of

argon arc melting of mixtures of high purity zirconium (99.97%) , vanadium (99.5%) and boron oxide (99.9%) .

 $1/2$, $1/2$) sites were found to be nearly fully occupied by deuterium pressures $0.5-2$ bar and temperatures around B/O atoms, while the 8*b* (7/8, 3/8, 7/8) octahedra were 673 K. Prior to passing deuterium gas (99.8% purity) into the autoclave, the samples were activated by heating under dynamic vacuum $(P<10^{-5} \text{ mbar})$ at 773 K for 1 h. *E-mail address:* volodymyr.yartys@ife.no (V.A. Yartys). Saturation was achieved in 1 h. The samples were then

^{*}Corresponding author. Tel.: $+47-63-806-453$; fax: $+47-63-810-920$.

slowly cooled in D_2 to room temperature. The cooling was accompanied by further, but less pronounced absorption. The D-content in the deuterides was monitored by volumetric measurements and corresponds to $Zr_3V_3B_{0.24}O_{0.36}D_{8.0\pm0.1}$ and $Zr_3V_3B_{0.40}O_{0.60}D_{6.4\pm0.1}$.

Structural characterisation of the alloys and deuterides was done by powder X-ray diffraction (XRD) [Philips PW1012 diffractometer, Cu K α radiation] and PND. PND data were collected at *T*=293 K with the PUS instrument $(\lambda = 1.5492 \text{ Å}$; focusing Ge(511) monochromator; 2 Θ = 10–130°; $\Delta 2\Theta = 0.05$ °; 2400 data points) at the JEEP II reactor (Kjeller). The samples were placed into sealed, cylindrical vanadium holders with inner diameter 5 mm. Nuclear scattering lengths were taken from Ref. [4] $(b_{Zr} =$ 7.16, $b_v = -0.38$, $b_o = 5.80$, $b_p = 6.67$ fm) and from Ref. [5] $(b_B¹¹ = 6.65$ fm). The general structure analysis system (GSAS) software [4] was used in the Rietveld-type refinements. The peak shape was described by a mixed Gaussian–Lorenzian function, and the background was modelled as a cosine Fourier series polynomial.

In addition to the main phase, η_1 -oxyboride, several Fig. 1. The framework of two types of Zr_6 octahedra in the structure of impurity phases are present in both materials. Analysis of the η_1 -type phase of $Zr_3V_3B_{0.24}O_{0.36}$ the PND data for the nondeuterated alloys [3] identified impurities as: α -Zr (Zr₃O), V (VO_{0.03}), ZrV₂ and V₃B₂. The data for the deuterated alloys are consistent with these Crystal chemical analysis shows how the different previous observations [3]. On deuteration three of the octahedral (8*b* and 16*d*, both Zr_6) and tetrahedral [D1 impurity phases form deuterides: ϵ -ZrD₂ (ThD₂-type struc- (Zr₃V2), *D*2 (Zr₂V1V2), *D*3 (Zr₃V2) and *D*4 (ZrV1V2₂)]
ture [6]; space group *14/mmm;* $a=3.495-3.521$; $c=$ interstitial sites are interconnecte ture [6]; space group $I4/mmm$; $a=3.495-3.521$; $c=$ 4.443–4.482 Å), VD₂ (CaF₂ structure [7]; space group The tetrahedral sites in the scheme correspond to the $Fm\overline{3}m$; $a=4.268-4.270$ Å) and ZrV_p. (space group reported positions for D atoms in the known structure *Fm*3*m*; *a* = 4.268–4.270 Å) and ZrV₂D₄ (space group *†* reported positions for D atoms in the known structures of $I4/a$; *a* = 5.606; *c* = 7.889 Å; see Ref. [8] for further *†* n-type (Ti₂Ni-type) based deuterid *I*⁴₁/*a*; *a*=5.606; *c*=7.889 Å; see Ref. [8] for further details on this structure). Since refined crystallographic $Zr_3V_3OD_{4.93}$ [15], $Ti_4Fe_2OD_{2.22}$ [16] and $Hf_4Fe_2D_{8.76}$ characteristics of V_3B_2 (U_3Si_2 structure [9,10]; $a=5.746-$ [17]. From size and chemical surrounding considerations 5.767: $c=3.032-3.040$ Å) agree well with the previously sites D1 and D3 are advantageous for hydr 5.767; $c = 3.032 - 3.040$ Å) agree well with the previously reported data for the deuterium-free Fig. 2 shows that both *D*1 and *D3* sites can be completely
 $Z_{I_2}V_2R_{2,2,2,2}$ and $Q_{2,2,2,2}$ allows [3] V.B. does not interact occupied by deuterium since each interstice is not $Zr_3V_3B_{0.24-0.40}O_{0.36-0.60}$ alloys [3], V_3B_2 does not interact with deuterium at the experimental conditions applied in common triangular faces of the same type. In contrast, the present work In addition trace amounts of δ - ZrO only a partial occupation of the D2 and D4 interstic the present work. In addition, trace amounts of δ -ZrO_x only a partial occupation of the *D*2 and *D*4 interstices can *X*² (N₂C¹ structure [111]; space group $Fm\bar{3}m$; $a=4.75$ Å) were take place since they a (NaCl structure [11]; space group *Fm*3*m*; *a* = 4.75 Å) were take place sin found in the Zr_vV - $B_{0.2}$ $Q_{0.2}$, $D_{0.8}$ sample tial positions. found in the $Zr_3V_3B_{0.24}O_{0.36}D_{8.0}$ sample.

3. Results and discussion

The two types of Zr_6 -octahedra, 8*b* and 16*d*, form a spatial network in the η_1 -type structure (Fig. 1), each sharing four (8*b*) or two (16*d*) triangular Zr_3 faces with neighbouring octahedra of the other type. Deuteration
increases the radii of these octahedra by ~0.1 Å (to
 $r=0.79-0.82$ Å), and the distances between the centres of
the 8b and 16d octahedra (2.733–2.755 Å) allow their simultaneous occupation by O/B atoms (for comparison, typical O-O, O-B and B-B distances in inorganic struc-
tures are, respectively, 2.8 Å [12], 1.3–1.7 Å [13] and
1.6–1.7 Å [14]).
1.6–1.7 Å [14]).

Observed, calculated and difference PND pattern from the Rietveld type refinements for $Zr_3V_3B_{0.24}O_{0.36}D_{8.0}$ and

ing neighbouring tetrahedra/octahedra.

 $Zr_3V_3B_{0.40}O_{0.60}D_{6.4}$ are shown in Figs. 3 and 4. Table 1 and O, and the D storage capacities (see Table 1). A) and $Zr-B$ (2.392–2.454 A) distances do not differ illustrating these transformations is presented in Fig. 5.

common feature of all the structure models is the preferen- for $Zr_3V_3OD_{4.93}$ [15], two distinct models describing the tial occupation of the *D*3 Zr_3V2 tetrahedra with 35, 53, 56 structures of the hydrides of η -oxides can be suggested. and 59% of deuterium from the overall $D/Zr_3V_3(B,O)$ These models are based on alternative occupation of O/B stoichiometry (see Table 1 for details). This is completely in the octahedral 8b or 16d sites and on the occupat stoichiometry (see Table 1 for details). This is completely different from the previously reported structure of D in the tetrahedral Zr_3V2 sites (*D*3 or *D*1), which are $Zr_3V_3OD_{4.93}$ (16 O in 16*d*; 8*b* non occupied; 40.4% D in most distant from the corresponding occupied $Zr_3V_3OD_{4.93}$ (16 O in 16*d*; 8*b* non occupied; 40.4% D in *D*1; 53.4% D in *D*2; 3.2% D in *D*3 and 3.0% D in *D*4) [15] with a very small amount of deuterium in the *D*3 sites Model A $8b(n = 1) + 16d(-) + D1(-) + D3(n = 1)$.

'host' sublattice upon D absorption for all η -type matrices. Representative: deuteride I in $Zr_3V_3B_{0.24}O_{0.36}D_{7.96}$. B and O are redistributed between the 8*b* and 16*d* sites and Significant occupation by D (in addition to *D*3): *D*4. the 8*b* site turns out to be significantly filled in the deuterides. In addition, hydrogen insertion induces phase Model B $8b(-) + 16d(n = 1) + D1(n = 1) + D3(-)$. separation of the originally single-phase η_1 -oxide into two Stoichiometry $Zr_3V_3(O,B)_{1,0}D_2$. deuterides (I and II), with different η_1 -type structures.
These structures are different with respect to the unit cell η_1 -type structures $Zr_3V_3OD_{4.93}$ [15]. dimensions, the population of the 8*b* and 16*d* sites by B Significant occupation by D (in addition to $D1$): $D2$.

presents the crystal structure data and interatomic dis- Complete occupancy by the nonmetallic atoms of the 8*b* tances. The metal–deuterium distances (see Table 1), Zr– octahedra and a corresponding small (or zero) filling of the $D=1.93-2.19$ Å and $V-D=1.61-1.98$ Å, fall into the 16*d* sites is characteristic for deuteride I. Both 8*b* and 16*d* typical range for metal hydrides. The $Zr-O$ (2.384–2.409 sites are partially occupied in deuteride II. A scheme

significantly from the nonhydrogenated η_1 -oxyborides, The most important features of the reported structures 2.285–2.291 and 2.310 Å, respectively [3]. The most interrelationships between O/B occupancy/vaare the interrelationships between O/B occupancy/va-All four types of tetrahedral interstitial positions $D1-D4$ cancy in the Zr_6 octahedra and D in their neighbouring are partially filled by D atoms in both deuterides. A key tetrahedra. Based on data from Table 1 and re tetrahedra. Based on data from Table 1 and reference data

and significant population of the *D*1 and *D2* sites. Stoichiometry $Zr_3V_3(O,B)_{0.5}D_6$.
The PND refinements show substantial changes of the

Fig. 3. Observed (+), calculated (upper line) and difference (lower line) powder neutron diffraction profile for $Z_r s_{3} B_{0.24} O_{0.36} D_{7.96}$. The positions of peaks of the constituent phases are marked (from bottom to top): deuteride I, ϵ -ZrD₂, ZrV₂D₄, V₃B₂, deuteride II, δ -ZrO_x and VD₂.

Fig. 4. Observed (+), calculated (upper line) and difference (lower line) powder neutron diffraction profile for $Z_r V_3 B_{0.40} O_{0.60} D_{6.57}$. The positions of peaks of the constituent phases are marked (from bottom to top): deuteride II, V_3B_2 , VD_2 , ϵ -ZrD₂ and deuteride I.

Crystal chemical analysis shows that model A can reach compared to reference data [16,19,20], a higher limit of the significantly higher theoretical value of H-storage capacity 'blocking radius' for the 'allowed' O/B...H separations than model B [18]. $(>2 \text{ Å})$.

In most cases, a superposition of models A and B takes The hydrogen sorption capacities of the alloys studied place with a simultaneous partial occupation of both types here are clearly related to the overall content of non of octahedra, 8*b* and 16*d*, and with all four types of transition elements in the 8*b* and 16*d* octahedra. Decreastetrahedra, *D*1, *D*2, *D*3 and *D*4, partly filled. A short range ing $O + B/f.u.,$ ongoing from $Zr_3V_3B_{0.40}O_{0.60}$ to order in the distribution of *D* atoms among the neigh-
 $Zr_3V_3B_{0.40}O_{0.60}$ increases the hydrog bouring $D1-D4$ tetrahedra should be assumed for such In addition to crystal structure data and overall $B+O/f.u$. structures. The 'combined' $A+B$ model covers deuterides contents, several other parameters should be considered for

tetrahedra ($D1$ and $D3$) are in the range $1.86-2.02$ Å. during H-absorption and desorption. These values exceed significantly the corresponding shortest separations between non-bonded O and H atoms in hydrides of mixed oxides (1.68 A in Ti₄Fe₂OD_{2.22} [16]) and the O . . . H 'hydrogen' bond length $(1.76 \text{ Å } [19])$. In **4. Conclusions** addition, the observed distances are close to the B...H separations between nonbonded B and H in borohydrides, Unusual transformations take place in the the local electronic density introduced by B/O in the tetrahedral sites adjusted to the occupied Zr_6 octahedra; (b) alloys.

 $Zr_3V_3B_{0.24}O_{0.36}$, increases the hydrogen sorption capacity. II in $Zr_3V_3B_{0.40}O_{0.60}D_{6.36}$ and in $Zr_3V_3B_{0.24}O_{0.36}D_{7.96}$ optimisation of the H-storage properties of alloys in the For all structure models the distances from the centres of $Zr-V-B_3O_3$ system. The most For all structure models the distances from the centres of $Zr-V-B_2O_3$ system. The most important are probably the the 8b and 16d octahedra to the neighbouring $Zr₃V2$ conditions of H-treatment (temperature, pressure conditions of H-treatment (temperature, pressure and time)

1.88 Å [20]. Thus, there are no formal stereochemical $Zr_3V_3B_{0.24-0.40}O_{0.36-0.60}$ alloys during hydrogen absorplimitations on simultaneous O/B occupation of octahedra tion–desorption cycling. The 'hydride' hydrogen increases and H in the *D*1–*D*4 tetrahedra in $Zr_3V_3B_{0.24}O_{0.36}D_{8.0}$ and significantly the mobility of the light nonmetalic atoms, O $Zr_3V_3B_{0.40}O_{0.60}D_{6.4}$. Two possible reasons for the ex-
and B, in the face centred $Zr_3V_3B_{0.40}O_{0.60}D_{6.4}$. Two possible reasons for the ex-
perimentally observed blocking in $Zr_3V_3B_{0.40}O_{0.60}D_{6.36}$ structures to allow hopping from 16d (1/2, 1/2, 1/2) into perimentally observed blocking in $Zr_3V_3B_{0.40}O_{0.60}D_{6.36}$ structures to allow hopping from 16*d* (1/2, 1/2, 1/2) into and $Zr_3V_3B_{0.30}O_{0.36}D_{7.96}$ are: (a) unfavourable changes in the 8*b* (7/8, 3/8, 7/8) oct and $Zr_3V_3B_{0.24}O_{0.36}D_{7.96}$ are: (a) unfavourable changes in the 8b (7/8, 3/8, 7/8) octahedra, and a return to a nearly the local electronic density introduced by B/O in the single occupation of the 16d sites for t Table 1

		$Zr_3V_3B_{0.24}O_{0.36}D_{7.96}$		$Zr_3V_3B_{0.40}O_{0.60}D_{6.36}$	
		Deuteride II ^a , main constituent $D/f.u. = 8.05$	Deuteride I ^a , minor constituent $D/f.u. = 7.89$	Deuteride II ^a , main constituent $D/f.u. = 5.94$	Deuteride I ^ª , minor constituent $D/f.u. = 8.88$
$R_{\rm pr}, R_{\rm wpr}, \chi^2$ $a(\AA)$		0.0396, 0.0515, 1.91 12.7214(7) 12.7250(5)		0.0463, 0.0576, 2.70 12.6230(7) $12.698(-)$	
Zr in 48f	\boldsymbol{x} \boldsymbol{n} $U_{\rm{iso}}$	0.5679(5) $1(-)$ $1.0(-)$	0.5648(3) $1(-)$ 0.8(1)	0.5664(4) $1(-)$ 1.3(1)	0.5634(8) $1(-)$ $0.3(-)$
$\mathrm{V1}$ in $16c\,$	\boldsymbol{n} $U_{\rm{iso}}$	$1(-)$ $1.0(-)$	$1(-)$ $1.0(-)$	$1(-)$ $0.5(-)$	$1(-)$ $2.5(-)$
V ₂ in 32e	\boldsymbol{x} \boldsymbol{n} $U_{\rm{iso}}$	$0.205(-)$ $1(-)$ $1.0(-)$	0.211(4) $1(-)$ $1.0(-)$	0.209(3) $1(-)$ $0.5(-)$	$0.210(-)$ $1(-)$ $2.5(-)$
B/O in 8b	\boldsymbol{n} $U_{\rm iso}$	0.83(3) $1.0(-)$	1.00(3) 3.2(3)	0.26(2) 0.9(2)	$1.00(-)$ $0.5(-)$
O/B in 16d	\boldsymbol{n} $U_{\rm iso}$	0.43(3) $2.0(-)$	0.12(2) 3.7(4)	0.80(2) 1.1(2)	$\overline{}$
$D1$ in 32e	$\boldsymbol{\chi}$ \boldsymbol{n} $U_{\rm{iso}}$	0.285(2) $0.25(-)$ $2.0(-)$		0.2901(4) 0.50(2) 0.5(1)	0.283(7) $0.15(-)$ $2.5(-)$
$D2$ in 192i	$\boldsymbol{\mathcal{X}}$ \mathcal{Y} $\ensuremath{\mathnormal{Z}}$ \boldsymbol{n} $U_{\rm iso}$	0.130(1) 0.235(2) 0.323(2) 0.149(9) $2.0(-)$	0.125(2) 0.249(3) 0.312(3) 0.069(4) 2.2(2)	0.1271(8) 0.2331(6) 0.3183(8) 0.184(5) 0.04(1)	0.130(3) 0.237(4) 0.316(4) $0.15(-)$ $2.5(-)$
$D3$ in 96g	\boldsymbol{x} $\ensuremath{\mathnormal{z}}$ \boldsymbol{n} $U_{\rm{iso}}$	0.2795(4) 0.6521(4) $0.75(-)$ $2.0(-)$	0.2775(2) 0.6502(3) 0.777(10) 1.6(1)	0.2853(6) 0.6521(8) 0.348(9) 3.4(3)	0.2820(8) 0.6551(7) 0.78(4) $0.8(-)$
$D4$ in 96g	$\boldsymbol{\mathcal{X}}$ $\ensuremath{\mathnormal{z}}$ \boldsymbol{n} $U_{\rm iso}$	0.344(1) 0.027(2) 0.21(1) $2.0(-)$	0.3497(4) 0.0321(8) 0.40(1) 1.5(1)	0.341(2) 0.017(2) 0.108(5) 1.9(2)	0.358(1) 0.036(2) $0.35(-)$ $0.5(-)$
$Zr-D(A)$ $V-D(A)$ $Zr-O(A)$ $Zr-B(A)$ $O-D(A)$ $B-D(A)$		$1.98(2)-2.08(1)$ $1.72(2)-1.90(2)$ 2.409(2) 2.454(6) 2.006(6) 1.99(4)	$1.95(3)-2.06(1)$ $1.75(4)-1.83(7)$ 2.396(1) 2.415(4) 1.974(4) 2.763(4)	$1.93(1) - 2.19(3)$ $1.63(3)-1.83(1)$ 2.384(2) 2.416(5) 2.02(1) 1.857(9)	$1.94(3)-2.09(5)$ $1.61(3)-1.98(2)$ 2.392(11) $\overline{}$ 2.02(13)

Unit cell data, reliability factors, atomic coordinates, occupancies and temperature factors (in 10^{-2} \AA^{-2}) for the deuterides of η_1 -oxyboride $Zr_3B_3B_{0.24-0.40}O_{0.36-0.60}$ from Rietveld refinements of PND data at room temperature

^a Approximate relative amounts deuteride I/deuteride II=7/8 ($Zr_3V_3B_{0.24}O_{0.36}D_{7.96}$) and 1/6 ($Zr_3V_3B_{0.40}O_{0.60}D_{6.36}$). Space group $Fd\bar{3}m$ (No. 227). Calculated standard deviations in parentheses. Atoms occupy the following positions: 48*f* (*x*,3/8,3/8), 16*c* (0,0,0), 32*e* (*x*,*x*,*x*), 8*b* (7/8,3/8,7/8), 16*d* (1/2, 1/2, 1/2), 192*i* (*x*,*y*,*z*), 96*g* (*x*,*x*,*z*).

gives significantly different deuterium sublattices in $Zr_3V_3B_{0.24}O_{0.36}D_{8.0}$ and $Zr_3V_3B_{0.40}O_{0.60}D_{6.4}$ deuterides compared to the chemically similar $Zr_3V_3OD_{4,93}$ [15], with O only in the 16*d* octahedra. **Acknowledgements**

The observed blocking of D insertion into the Zr_3V
tetrahedra connected to the O/B-filled Zr_6 octahedra leads tetrahedra connected to the O/B-filled Zr_6 octahedra leads
to the conclusion that hydrogen storage capacity reaches
kind provision of the isotope-pure boron oxide, ${}^{11}B_2O_3$. We

The redistribution of O/B within the 16*d* and 8*b* sites the highest values for the $Zr_3V_3(B,O)_{\leq 0.5}$ oxyborides with 3 significantly different deuterium sublattices in only 8*b* site occupied by O/B.

Fig. 5. Change of the relative occupancies of the 8*b* and 16*d* octahedra [14] Yu.B. Kuz'ma, Crystal Chemistry of Borides, Vyszcza Szkola, Lviv, by B and O atoms on deuteration of the η_1 -oxyboride. 1983, 160 p.

appreciate the cooperation and fruitful discussions with

Professor I.R. Harris, Dr P.W. Guegan (The University of [17] J.L. Soubeyroux, D. Fruchart, S. Derdour, P. Vuillet, A. Rouault, J.

[17] J.L. Soubeyroux, D. Fruchar Birmingham) and Professor H. Fjellvåg (Oslo University). *Less-Common Metals 129 (1987) 187.*

[1] V.A. Yartys, I.Yu. Zavaliy, M.V. Lototzky, Koord. Khimiya (Sov. J. Coord. Chem.) 18 (4) (1992) 409.

- [2] V.A. Yartys, I.Yu. Zavaliy, M.V. Lototzky, A.B. Riabov, Yu.F. Shmalko, Z. Phys. Chem. 183 (1994) 465.
- [3] A.B. Riabov, V.A. Yartys, B.C. Hauback, P.W. Guegan, G. Wiesinger, I.R. Harris, J. Alloys Comp. 293–295 (1999) 93.
- [4] A.C. Larson, R.B. von Dreele, General Structure Analysis System, LANL, 1994.
- [5] V.F. Sears, Neutron News 3 (1992) 26.
- [6] S.S. Sidha, N.S. Satya Murthy, F.P. Campos, D.D. Zauberis, Adv. Chem. Ser. 39 (1963) 87.
- [7] H. Müller, K. Weymann, J. Less-Common Metals 119 (1986) 115.
- [8] J.-J. Didisheim, K. Yvon, P. Fischer, D. Shaltiel, Solid State Commun. 38 (1981) 637.
- [9] E. Rudy, F. Benessovsky, L. Toth, Z. Metallk. 54 (1963) 345.
- [10] R.E. Spear, P.W. Gilles, High Temp. Sci. 1 (1969) 86.
- [11] L.M. Kovba, I.I. Kornilov, E.M. Kenina, V.V. Glazova, Doklady AN SSSR 180 (1968) 360, in Russian.
- [12] M. Marezio, J.P. Remeika, P.D. Dernier, Acta Crystallogr. B 26 (1979) 2008.
- [13] S.V. Berger, Acta Chem. Scand. 7 (1953) 611.
-
- [15] F.J. Rotella, H.E. Flotow, D.M. Gruen, J.D. Jorgensen, J. Chem. Phys. 79 (1983) 4522.
-
-
- [18] A.B. Riabov, V.A. Yartys, to be published.
- [19] A.B. Riabov, PhD thesis, Lviv (1997) 152 p.
- [20] R.D. Dobrott, L.B. Friedman, W.N. Lipscomb, J. Chem. Phys. 40 **References** (1964) 866.